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Abstract. The regularization functional induced by the graph Lapla-
cian of a random neighborhood graph based on the data is adaptive in
two ways. First it adapts to an underlying manifold structure and second
to the density of the data-generating probability measure. We identify in
this paper the limit of the regularizer and show uniform convergence over
the space of Hölder functions. As an intermediate step we derive upper
bounds on the covering numbers of Hölder functions on compact Rie-
mannian manifolds, which are of independent interest for the theoretical
analysis of manifold-based learning methods.

1 Introduction

Naturally graphs are inherently discrete objects. However if there exists an un-
derlying continuous structure certain neighborhood graphs can be seen as ap-
proximations of the underlying continuous structure. The main goal of this paper
is to show how that the smoothness functional S(f) induced by the graph Lapla-
cian of a neighborhood graph built from random samples can be defined in such
a way that its continuum limit approximates a desired continuous quantity.
In principle such considerations have been the motivation to build algorithms
based on the graph Laplacian for dimensionality reduction, clustering and semi-
supervised learning, see e.g. [2, 1, 15, 6]. However the theoretical study of this
motivation in particular when the data in Rd lies on a Euclidean submanifold
has been only started quite recently. In [8], see also [3], it was shown that the
pointwise limit of the normalized graph Laplacian is the weighted Laplace Bel-
trami operator. The first work where the limit of S(f) has been studied was [4].
There the limit of S(f) for a single function in the case when the data generating
probability measure P has full support in Rd was derived in a two step process,
first n→∞, then letting the neighborhood size h→ 0. In this paper we extend
this result in several ways. First we extend it to the setting where the data lies
on a submanifold1 M of Rd, second we introduce data-dependent weights for the
graph which are used to control the influence of the density p of P on the limit
functional, third we do the limit process n → ∞ and h → 0 simultaneously, so
that we actually get rates for h(n) and finally we perform this limit uniformly
over the function space of Hölder functions.
We include also an extensive discussion of the properties of the limit smoothness

1 All the results apply also in the case where P has full d-dimensional support in Rd.



functional and why and how it can be interesting in different learning algo-
rithms such as regression, semi-supervised learning and clustering. In particular
the adaptation to the two independent structures inherent to the data, the ge-
ometry of the data manifold M and the density p of P , are discussed.

2 Regularization with the graph Laplacian and its
continuous limit

The first part of this section introduces the smoothness functional induced by the
graph Laplacian for an undirected graph, in particular the neighborhood graph
studied in this paper. In the second part we will sketch our main result, the uni-
form convergence of the smoothness functional induced by the graph Laplacian
over the space of α-Hoelder functions. In particular we study the adaptation
of the continuous limit functional to the geometry of the data manifold and
the density of the data generating measure and possible applications thereof in
semi-supervised learning, regression and clustering.

2.1 The graph Laplacian and its induced smoothness functional

Let (V,E) be a undirected graph, where V is the set of vertices with |V | = n and
E the set of edges. Since the graph is undirected we have a symmetric adjacency
matrixW . Moreover we define the degree function as di =

∑n
j=1 wij . Then it can

be shown, see [8], that once one has fixed Hilbert spaces HV ,HE of functions
on V and E and a discrete differential operator ∇ : HV → HE , the graph
Laplacian2 ∆ : HV → HV is defined as ∆ = ∇∗∇, where ∇∗ is the adjoint of d.
In the literature one mainly finds two types of graph Laplacian, the normalized
one ∆norm =

� − D−1W and the unnormalized one ∆unnorm = D −W , where
Dij = diδij . The smoothness functional S(f) : HV → R+ induced by the graph
Laplacian is defined as

S(f) = 〈∇f,∇f〉HE
= 〈f,∆f〉HV

.

Note that S(f) defines a semi-norm on HV . It is can be shown that ∆norm and
∆unnorm induce the same S(f) explicitly given as:

S(f) =
1

2n(n− 1)

n
∑

i6=j

wij

(

f(i)− f(j)
)2
.

S(f) coincides for the two graph Laplacians since S(f) is independent of the
choice of the inner product in HV , see [9, sec. 2.1.5]. Note that the smoothness
functional S(f) penalizes a discrete version of the first derivative of f .
In this paper we study certain neighborhood graphs that is the weights depend

2 This holds also for directed graphs, see [9, sec. 2.1].
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on the Euclidean distance. The vertex set is an i.i.d. sample {Xi}ni=1 of the data
generating probability measure P . Of special interest is the case where P has
support on am-dimensional submanifoldM in Rd. Similar to Coifman and Lafon
in [6] for the continuous case we define the weights of the graph as follows:

wλ,h,n(Xi, Xj) =
1

hm
k(‖i(Xi)− i(Xj)‖2 /h2)

(dh,n(Xi)dh,n(Xj))λ
, λ ∈ R.

where dh,n(Xi) = 1
nhm

∑n
j=1 k(‖Xi −Xj‖2 /h2) is the degree function corre-

sponding to the weights k. Note that since k is assumed to have compact sup-
port, the parameter h determines the neighborhood of a point. We will denote
by Sλ,h,n(f) the smoothness functional with respect to the weights wλ,h,n,

Sλ,h,n(f) =
1

2n(n− 1)h2

n
∑

i,j=1

(f(Xj)− f(Xi))
2wλ,h,n(Xi, Xj).

2.2 The continuous regularizer induced by the weighted Laplacian

The weighted Laplacian is the natural extension of the Laplace-Beltrami opera-
tor3 on a Riemannian manifold, when the manifold is equipped with a measure
P which is in our case the probability measure generating the data.

Definition 1 (Weighted Laplacian). Let (M, gab) be a Riemannian manifold
with measure P where P has a differentiable density p with respect to the natural
volume element dV =

√
det g dx, and let ∆M be the Laplace-Beltrami operator

on M . Then we define the s-th weighted Laplacian ∆s as

∆s := ∆M +
s

p
gab(∇ap)∇b =

1

ps
gab∇a(p

s∇b) =
1

ps
div(ps grad). (1)

The weighted Laplacian induces a smoothness functional S∆s
: C∞c (M)→ R+,

S∆s
(f) := −

∫

M

f(∆sf) p
sdV =

∫

M

〈∇f,∇f〉 psdV,

The following sketch of our main Theorem 6 shows that one can choose a function
h(n) such that Sλ,h,n(f) approximates S∆γ

(f) uniformly for γ = 2− 2λ.

Sketch of main result Let Fα(s) be the ball of radius s in the space of Hölder
functions on M . Define γ = 2 − 2λ, then there exists a constant c depending

only on k such that for α ≥ 3 and h(n) = O(n
− α

2α+2m+m2+mα ),

sup
f∈Fα(s)

∣

∣Sλ,h,n(f)− c S∆γ
(f)
∣

∣ = O
(

n
− α

2α+2m+m2+mα

)

a.s.

3 The Laplace-Beltrami operator on a manifold M is the natural equivalent of the
Laplacian in Rd, defined as

∆Mf = div(grad f) = ∇a∇af
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We refer to Section 4 for a more detailed account of the results. Let us analyze
now the properties of the limit smoothness functional S∆γ

S∆γ
(f) =

∫

M

‖∇f‖2TxM p(x)2−2λ
√

det g dx

Note first that ‖∇f‖TxM is the norm of the gradient of f on M . The meaning

becomes clearer when we express ‖f‖TxM as a local Lipschitz constant4 LM
x (f),

‖∇f‖TxM = LM
x (f) = sup

y∈M

|f(x)− f(y)|
dM (x, y)

6= sup
y∈M

|f(x)− f(y)|
‖x− y‖ = LRd

x (f)

Most important the smoothness of f is measured with respect to the metric of
M or in other words with respect to the intrinsic parameterization. That is a
small ‖f‖TxM implies that f(x) ' f(y) if x and y are close in the metric of M

but not in the metric5 of Rd. Therefore as desired the graph Laplacian based
smoothness functional adapts to the intrinsic geometry of the data.
Next we motivate how the adaptation to the density p controlled by λ can be
used in learning algorithms. For γ > 0 the functional S∆γ

prefers functions f
which are smooth in high-density regions whereas changes are less penalized
in low-density regions. This is a desired property for semi-supervised learning
where one assumes especially if one has only a few labeled points that the clas-
sifier should be almost constant in high-density regions whereas changes of the
classifier are allowed in low-density regions, see e.g [4]. However also the case
γ < 0 is interesting. Then minimizing S∆γ

(f) implies the opposite: smoothness
of the function f is enforced where one has little data, and more variation of
f is allowed where more data points are sampled. Such a penalization seems
appropriate for regression and has been considered by Canu and Elisseeff in [5].
Another application is spectral clustering. The eigenfunctions of ∆γ can be seen
as the limit partioning of spectral clustering for the normalized graph Laplacian
(however a rigorous proof has not been given yet). We show now that for γ > 0
the eigenfunction correponding to the first non-zero eigenvalue is likely to change
its sign in a low-density region. Let us assume for a moment that M is compact
without boundary and that p(x) > 0,∀x ∈ M , then the eigenspace for the first
eigenvalue λ0 = 0 is given by the constant functions. The next eigenvalue λ1 can
be determined by the Rayleigh-Ritz variational principle

λ1 = inf
u∈C∞(M)

{

∫

M
‖∇u‖2 p(x)γdV (x)

∫

M
u2(x)p(x)γdV (x)

∣

∣

∣

∫

M

u(x) p(x)γdV (x) = 0

}

.

Since the first eigenfunction has to be orthogonal to the constant functions, it
has to change its sign. However since ‖∇u‖2 is weighted by pγ it is obvious that
for γ > 0 the function changes its sign in a region of low density.

4 f is continuously differentiable so both terms coincide.
5 Note that small ‖x− y‖ does not imply that dM (x, y) is small e.g. imagine a spiral.
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3 Covering numbers for α-Hölder functions on compact
Riemannian manifolds with boundary

In this section we derive bounds on the covering numbers of α-Hölder functions
on compact Riemannian manifolds with boundary. This generalizes the classical
bounds for Euclidean space derived by Kolmogorov and Tihomirov [12, 14]. We
use in this section the following short notation: For any vector k = (k1, . . . , kd)

of d integers, Dk = ∂k

∂x
k1
1 ...∂x

kd
d

with k =
∑d

i=1 ki.

3.1 Technicalities on compact Riemannian manifolds with boundary

We briefly introduce the framework of manifolds with boundary of bounded
geometry developed by Schick in [13] for non-compact Riemannian manifolds,
which we will use frequently in the following. It makes explicit several geomet-
ric properties which are usually implicitly assumed due to compactness of the
manifold. Note that the boundary ∂M is an isometric submanifold of M . It has
a second fundamental form Π which should not be mixed up with the second
fundamental form Π of M with respect to the ambient space Rd. We denote by
∇ the connection and by R the curvature of ∂M . Moreover let ν be the nor-
mal inward vector field at ∂M and let K be the normal geodesic flow defined
as K : ∂M × [0,∞) → M : (x′, t) → expMx′ (tνx′). Then the collar set N(s) is
defined as N(s) := K(∂M × [0, s]) for s ≥ 0.

Definition 2 (Manifold with boundary of bounded geometry). Let M
be a manifold with boundary ∂M (possibly empty). It has bounded geometry if
the following holds:

– (N) Normal Collar: there exists rC > 0 so that the geodesic collar

∂M × [0, rC)→M : (t, x)→ expx(tνx)

is a diffeomorphism onto its image (νx is the inward normal vector).
– (IC) The injectivity radius6 rinj(∂M) of ∂M is positive.
– (I) Injectivity radius of M : There is ri > 0 so that if r ≤ ri then for x ∈
M\N(r) the exponential map is a diffeomorphism on BM (0, r) ⊂ TxM so
that normal coordinates are defined on every ball BM (x, r) for x ∈M\N(r).

– (B) Curvature bounds: For every k ∈ N there is Ck so that |∇iR| ≤ Ck and

∇i
Π ≤ Ck for 0 ≤ i ≤ k.

The injectivity radius makes no sense at the boundary since inj(x) → 0 as
d(x, ∂M) → 0. Therefore we replace next to the boundary normal coordinates
with normal collar coordinates. In our proofs we divide M into the set N(r)7

and M\N(r). On M\N(r) we work like on a manifold without boundary and
on N(r) we use normal collar coordinates defined below.

6 The injectivity radius inj(x) at a point x is the largest r such that the exponential
map expx is defined on BRm(0, r) and injective. In general we refer the reader to
Section 2.2. of [9] for basic notions of differential geometry needed in this paper.

7 Note that for sufficiently small r, N(r) = {x ∈M | d(x, ∂M) ≤ r}.
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Definition 3 (normal collar coordinates). LetM be a Riemannian manifold
with boundary ∂M . Fix x′ ∈ ∂M and an orthonormal basis of Tx′∂M to identify
Tx′∂M with Rm−1. For r1, r2 > 0 sufficiently small (such that the following map
is injective) define normal collar coordinates,

nx′ : BRm−1(0, r1)× [0, r2]→M : (v, t)→ expMexp∂M
x′

(v)(tν).

The tuple (r1, r2) is called the width of the normal collar chart nx′ and we denote
by n(x′, r1, r2) the set nx′(BRm−1(0, r1)× [0, r2]).

We denote further by n(x, r) the set expx(BRm(0, r)). The next lemma is often
used in the following.

Lemma 1 ([13]). Let (M, g) be a m-dimensional Riemannian manifold with
boundary of bounded geometry. Then there exists R0 > 0 and constants S1 > 0
and S2 such that for all x ∈M and r ≤ R0 one has

S1r
m ≤ vol(BM (x, r)) ≤ S2r

m, ∀x ∈M

S1r
m ≤ vol(n(x′, r, r)) ≤ S2r

m, ∀x′ ∈ ∂M

Definition 4 (radius of curvature). The radius of curvature of M is defined
as ρ = 1

Πmax+Πmax
, where Πmax = supx∈M ‖Π‖x and Πmax = supx∈∂M

∥

∥Π
∥

∥

x
.

The radius of curvature tells us how much the manifoldM and its boundary ∂M
are curved with respect to the ambient space Rd. It is used in the next lemma
to compare distances in Rd with distances in M .

Lemma 2 ([9]). Let M have a finite radius of curvature ρ > 0. We further
assume that κ := infx∈M infy∈M\BM (x,πρ) ‖x− y‖ > 0. Then BRd(x, κ/2)∩M ⊂
BM (x, κ) ⊂ BM (x, πρ). Particularly, if x, y ∈M and ‖x− y‖ ≤ κ/2,

1

2
dM (x, y) ≤ ‖x− y‖Rd ≤ dM (x, y) ≤ κ.

Note that for a compact manifold (with boundary) one has ρ > 0 and κ > 0.

3.2 Covering numbers for α-Hölder functions

Definition 5 (α-Hölder functions). For α > 0 denote by α the greatest inte-
ger smaller than α. Let M be a compact Riemannian manifold and let (Ui, φi)i∈I
be an atlas of normal coordinate charts, φi : Ui ⊂ Rm → M , such that M ⊂
∪iφi(Ui). Then for a Cα-function f : M → R, let

‖f‖α =max
k≤α

sup
i∈I

sup
x∈Ui

∣

∣Dk(f ◦ φi)(x)
∣

∣

+max
k=α

sup
i∈I

sup
x,y∈Ui

∣

∣Dk(f ◦ φi)(x)−Dk(f ◦ φi)(y)
∣

∣

d(x, y)α−α

The function space Fα = {f ∈ Cα | ‖f‖α < ∞} is the Banach space of Hölder
functions. Fα(s) denotes a ball of radius s in Fα. We define further

‖f‖Ck(M) = max
k≤α

sup
i∈I

sup
x∈Ui

∣

∣Dk(f ◦ φi)(x)
∣

∣.
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Note that since all transition maps between normal charts and their derivatives
are uniformly bounded the above definition of ‖f‖Ck(M) could be equivalently re-

placed8 with the invariant (coordinate independent) norm of the k-th derivatives

defined by Hebey in [7] as,
∥

∥∇kf
∥

∥

2
= gi1j1 . . . gikjk∇i1 . . .∇ikf ∇j1 . . .∇jkf . For

the Lipschitz type condition it is unclear if there exists an equivalent invariant
definition. However the following results for Fα remain true if we assume that
the α + 1-first derivatives are uniformly bounded. This small change leads for
sure to a norm which is equivalent to a coordinate independent norm on M .
In order to construct a convering of Fα we first need a covering ofM with normal
and normal collar charts.

Theorem 1. Let M be a compact m-dimensional Riemannian manifold and
let ε ≤ min{R0, inj(∂M), ri}. Then there exists a maximal ε-separated subset
T1 := {x′i1}i∈I1 of ∂M and a maximal ε-separated subset T2 := {xi2}i∈I2 of
M\N(ε) such that

– N(ε) ⊂ ⋃i∈I1
n(x′i, ε, ε) and M\N(ε) ⊂ ⋃i∈I2

n(xi, ε),

– |I1| ≤ 2S2 vol(∂M)
S1

(

2
ε

)m−1
, and |I2| ≤ vol(M)

S1

(

2
ε

)m
.

Theorem 2. Let M be a compact m-dimensional manifold and let s > 0 and
ε ≤ (3se2m)(min{R0, inj(∂M), ri})α. Then there exists a constant K depending
only on α, m and M such that

logN (ε,Fα(s), ‖·‖∞) ≤ K
(s

ε

)
m
α

The proof of these theorems can be found in the appendix. The main differences
of the proof of Theorem 2 to the classical one in [12, 14] are that the function
and its derivatives are discretized in different normal charts so that one has to
check that coordinate changes between these normal charts do not destroy the
usual argument and an explicit treatment of the boundary.

4 Uniform convergence of the smoothness functional
induced by the graph Laplacian

4.1 Assumptions

We ignore in this paper measurability problems, see [14] for a discussion. All
results in this section are formulated under the following assumptions on the
submanifold M , the density p and the kernel k:

Assumption 1 – i : M → Rd is a smooth, isometric embedding,
– M is a smooth compact manifold with boundary (∂M can be empty),
– P has a density p with respect to the natural volume element dV on M ,
– p ∈ C3(M) and p(x) > 0,∀ x ∈M ,

8 in the sense that the resulting norms are equivalent

7



– the sample Xi, i = 1, . . . , n is drawn i.i.d. from P .
– k : R∗+ → R is measurable, non-negative and non-increasing,

– k ∈ C2(R∗+), that is in particular k, ∂k
∂x and ∂2k

∂x2 are bounded,
– k has compact support on [0, R2

k],

– k(0) = 0, and ∃rk > 0 such that k(x) ≥ ‖k‖∞
2 for x ∈ ]0, rk].

Since M is compact, M is automatically a manifold of bounded geometry. In
particular all curvatures (intrinsic as well as extrinsic) are bounded. In order
to emphasize the distinction between extrinsic and intrinsic properties of the
manifold we always use the slightly cumbersome notations x ∈ M (intrinsic)
and i(x) ∈ Rd (extrinsic). The kernel functions k which are used to define the
weights of the graph are always functions of the squared norm in Rd. The con-
dition k(0) = 0 implies that the graph has no loops9. In particular the kernel
is not continuous at the origin. All statements could also be proved without
this condition. The advantage of this condition is that some estimators become
thereby unbiased. Finally let us introduce the notation , kh(t) =

1
hm k

(

t
h2

)

. and
the following two constants related to the kernel function k,

C1 =

∫

Rm

k(‖y‖2)dy <∞, C2 =

∫

Rm

k(‖y‖2)y2
1dy <∞. (2)

4.2 Results and Proofs

The smoothness functional Sλ,h,n(f) has been defined in Section 2 as

Sλ,h,n(f) =
1

2n(n− 1)h2

n
∑

i,j=1

(f(Xj)− f(Xi))
2 1

hm
k(‖i(Xi)− i(Xj)‖2 /h2)

(dh,n(Xi)dh,n(Xj))λ
.

Note that this sum is a U -statistic of order 2. We define further ph as the
convolution of the density with the kernel

ph(x) =

∫

M

kh(‖i(x)− i(y)‖2)p(y)
√

det g dy. (3)

and S̃λ,h,n(f) as Sλ,h,n(f) with dh,n(x) replaced by ph(x). The following propo-
sition will be often used.

Proposition 1 ([8]). For any x ∈M\∂M , there exists an h0(x) > 0 such that
for all h < h0(x) and any f ∈ C3(M),

∫

M

kh

(

‖i(x)− i(y)‖2Rd

)

f(y)p(y)
√

det g dy

=C1p(x)f(x) +
h2

2
C2

(

p(x)f(x)S(x) + (∆M (pf))(x)
)

+O(h3),

where S(x) = 1
2

[

− R
∣

∣

x
+ 1

2 ‖
∑

aΠ(∂a, ∂a)‖2Ti(x)Rd

]

and O(h3) is a function

depending on x, ‖f‖C3 and ‖p‖C3 .

9 An edge from a vertex to itself is called a loop.
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Furthermore we use the following result which basically identifies the extended
degree-function of the graph defined as dh,n(x) = 1

n

∑n
i=1 kh(‖x−Xi‖), as a

kernel density estimator on the submanifold M .

Proposition 2 (Pointwise consistency of dh,n(x) [9]). Let x ∈M/∂M , then
there exist constants b1, b2 such that

P(|dh,n(x)− ph(x)| > ε) ≤ 2 exp
(

− nhm ε2

2b2 + 2/3b1 ε

)

In particular if h→ 0 and nhm/ log n→∞, limn→∞ dh,n(x) = C1 p(x) a.s..

We refer to [9] for a comparison with a similar result of Hendricks et al. in [10]. In
[9] the limit of the smoothness functional Sλ,h,n was shown for a single function
using a Bernstein-type inequality of Hoeffding [11] for U -statistics.

Theorem 3 (Strong consistency of the smoothness functional Sλ,h,n).
Let f ∈ C3(M). If h→ 0 and nhm/ log n→∞,

lim
n→∞

Sλ,h,n(f) =
C2

2Cλ
1

∫

M

‖∇f‖2TxM p(x)2−2λ
√

det g dx, almost surely.

We extend now this theorem to uniform convergence over balls in the function
space of α-Hölder functions. As a first step we prove an abstract uniform con-
vergence result without specifying the function class F .

Theorem 4. Let F be a function class with supf∈F supx∈M ‖∇xf‖ ≤ s. Then

there exist constants C ′, C > 0 such that for all C′s2

nhm < ε < 1/C and 0 < h <

hmax, with probability greater than 1−2
(

C n+N
(

ε hm+1

2C s ,F , ‖·‖∞
)

)

e−
nhm (1/s)4 ε2

4C ,

sup
f∈F

∣

∣Sλ,h,n(f)− E S̃λ,h,n(f)
∣

∣ ≤ ε

Proof: First we decompose the term as follows:

sup
f∈F

|Sλ,h,n(f)− E S̃λ,h,n(f)|

≤ sup
f∈F

|Sλ,h,n(f)− S̃λ,h,n(f)|+ sup
f∈F

|S̃λ,h,n(f)− E S̃λ,h,n(f)| =: I + II

We start with the term I. Define Un,h(f) =
2R2

k s
2

n(n−1)

∑n
i,j=1 kh(‖i(Xi)− i(Xj)‖)

and let us work in the following on the event E1 where

max
1≤i≤n

|dh,n(Xi)− ph(Xi)| ≤ τ, and |Un,h(f)− EUn,h(f)| ≤ τ

From Proposition 2 and the proof of Theorem 3 we know that there exists a

constant C such that E1 holds with probability greater than 1−Cne−
nhmτ2

C for
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τ ≥ C
nhm . Since M is compact, we have ∀x ∈M , 0 < D1 ≤ ph(x) ≤ D2. Using a

Taylor expansion of x→ x−λ with

β = min{dh,n(Xi)dh,n(Xj), ph(Xi)ph(Xj)}−λ−1 ≤ (D1 − τ)−2(λ+1),

we get for τ < D1/2,
∣

∣

∣

∣

1

(dh,n(Xi)dh,n(Xj))λ
− 1

(ph(Xi)ph(Xj))λ

∣

∣

∣

∣

≤ λβ [(D2 + τ)τ +D2τ ] ≤ C ′τ,

where C ′ is independent of Xi and Xj . By Lemma 1 and 2 we get for hRk ≤
min{κ/2, R0/2}, EUn,h(f) ≤ 2m+1S2 R

m+2
k s2 D2 ‖k‖∞ so that for τ ≤

EUn,h(f) we get on E1

sup
f∈F

|Sλ,h,n(f)− S̃λ,h,n(f)| ≤
2R2

k s
2 C ′ τ

n(n− 1)

n
∑

i,j=1

kh(‖i(Xi)− i(Xj)‖)

≤
(

2m+1S2 R
m+2
k s2 D2 ‖k‖∞ + τ

)

C ′τ ≤ ε

4
,

where we have set τ = ε
C′ 2m+2S2 R

m+2
k s2 D2 ‖k‖∞

. Now let us deal with II. By

assumption we have a δ-covering of F in the ‖·‖∞-norm. We rewrite the U -

statistic S̃λ,h,n(f) =
1

n(n−1)

∑

i,j hf (Xi, Xj) with kernels hf indexed by f ∈ F ,

where

hf (x, y) =
1

hm+2

k(‖i(x)− i(y)‖)
(ph(x)ph(y))λ

[

f(x)− f(y)
]2

The δ-covering Cδ(F) of F induces a covering of HF = {hf | f ∈ F}.

|hf (x, y)− hg(x, y)| ≤
8 ‖k‖∞
h1+mD2λ

1

sRk ‖f − g‖∞ ≤
C

2
s
‖f − g‖∞
hm+1

,

where we have used Lemmas 1,2 and have set C =
16‖k‖∞ Rk

D2λ
1

. We conclude that

a δ-covering of F induces a Cs
hm+1 δ-covering of HF . This implies that for any

f ∈ F there exists a g ∈ Cδ(F) such that,

|S̃λ,h,n(f)− E S̃λ,h,n(f)| ≤ C
s δ

hm+1
+ |S̃λ,h,n(g)− E S̃λ,h,n(g)|

We denote by E2 the event where supg∈Cδ(F) |S̃λ,h,n(g)− E S̃λ,h,n(g)| ≤ ε/4 and

choose δ ≤ hm+1

C s
ε
2 . In the proof of Theorem 3 it is shown that for one function

g there exist constants K1 and K2 independent of h, s and the function class F
such that the following Bernstein-type inequality holds

P
(

|S̃λ,h,n(g)− E S̃λ,h,n(g)| ≥
ε

4

)

≤ 2 e
−

[n/2]hm (1/s)4 ε2

32K1+32/3 ε
s2

K2 .

Taking the union bound over the covering Cδ(F) yields

P

(

sup
g∈Cδ(F )

|S̃λ,h,n(g)− E S̃λ,h,n(g)| ≥
ε

4

)

≤ 2N
(

δ, F , ‖·‖∞
)

e
−

[n/2]hm (1/s)4 ε2

32K1+32/3 ε
s2

K2

10



In total we have on the event E1 and E2

sup
g∈F

|Sλ,h,n(g)− E S̃λ,h,n(g)| ≤ I + II ≤ ε

4
+
ε

2
+
ε

4
≤ ε

Putting the results for E1 and E2 together we are done. ¤

Note that despite F is not required to be uniformly bounded in the previous
theorem, one gets only finite covering numbers in the ‖·‖∞ norm under this

condition. In order to get finite sample bounds, we need to know how far E S̃λ,h,n
is away from its limit for finite h uniformly over a certain function class F .

Theorem 5. Let F be a function class such that supf∈F ‖f‖C3(M) ≤ s. Then

there exist constants C ′, C ′′ > 0 depending only on M,p and the kernel k such
that for all h < C ′min{πρ3 , ri3 , κ

2Rk
, R0

Rk
},

sup
f∈F

∣

∣

∣E S̃λ,h,n −
C2

2Cλ
1

∫

M

〈∇f,∇f〉TxM p(x)2−2λ
√

det g dx
∣

∣

∣
≤ C ′′ s2h

Proof: Let us first define

Bλ,h(x) :=
1

2h2

∫

M

(f(x)− f(y))2kh(‖i(x)− i(y)‖) p(y)

(ph(x)ph(y))λ
dV (y).

so that E S̃λ,h,n =
∫

M
Bλ,h(x) p(x) dV (x). Now we decompose M as M =

M\N(r) ∪ N(r), where r ≤ ri (see Definition 2), which implies that for all
x ∈ M\N(r) there exist normal coordinates on the ball BM (x, r), that is
inj(M\N(r)) = r. The expansion of Proposition 1 holds pointwise for h0 ≤
C′

3 min{πρ, inj(x)}10. Since ρ is lower-bounded due to compactness of M and
inj(M\N(r)) = r we can use Proposition 1 uniformly overM\N(r), which yields

sup
x∈M\N(r)

∣

∣

∣
Bλ,h(x)−

C2

2Cλ
1

〈∇f,∇f〉TxM p(x)1−2λ
∣

∣

∣
≤ C ′′s2h,

where C ′′ is independent of F . Therefore the bound holds uniformly over the
function class F . Next we have two error terms I and II:

I :=

∫

N(r)

Bλ,h(x)p(x)dV (x), II :=
C2

2Cλ
1

∫

N(r)

‖∇f‖2 p2−2λ(x)dV (x)

Let us first deal with I. By Lemma 2 we have for hRk ≤ κ
2 , dM (x, y) ≤

2 ‖x− y‖ ≤ 2hRk (due to compact support of k). Together with the volume
bound from Lemma 1 we get for hRk ≤ min{κ/2, R0/2}:

|Bλ,h(x)| ≤
2s2R2

k ‖k‖∞ ‖p‖∞
D2λ

1

S22
mRm

k

10 The factor 1/3 arises since we have to take care that also for all points y ∈ BM (x, r/3)
we can do the expansion for ph(y).

11



Again using the volume bound from Proposition 1 for r ≤ R0 yields:

I ≤ 2s2R2
k ‖k‖∞ ‖p‖

2
∞

D2λ
1

S22
mRm

k S2 r vol(∂M) := C ′′′s2 r

By the volume bound and ‖∇f‖∞ ≤ s we get II ≤ C ′′′′s2r. For r ≤ πρ we
choose h = C r for some constant C so that all error terms are of order s2 h. ¤

Theorems 4 and 5 together provide a finite sample result for the convergence of
Sλ,h,n over a sufficiently smooth function class F . We use now the upper bounds
on the covering numbers of a ball of α-Hölder functions in order to get an explicit
finite sample bound and rates for h(n). Moreover we let s(n) → ∞ so that in
the limit we get uniform convergence for all α-Hölder functions.

Theorem 6. Let Fα(s) be the ball of radius s in the space of Hölder functions
Fα on M . Define γ = 2 − 2λ and c = C2

2Cλ
1
, then for α ≥ 3 and h → 0 and

nh
m2+m+αm

α →∞,

sup
f∈Fα(s)

∣

∣Sλ,h,n(f)− c S∆γ
(f)
∣

∣ = O

(

s2

(nh
m2+m+αm

α )
α

2α+m

)

+O(s2 h) a.s.

The optimal rate for h is h = O(n
− α

2α+2m+m2+mα ).

Let s = log(n), then if h→ 0 and nh
m2+m+αm

α /log(n)
4α+2m

α →∞ one has,

∀ f ∈ Fα, lim
n→∞

Sλ,h,n(f) =
C2

2Cλ
1

∫

M

‖∇f‖2TxM p(x)2−2λ
√

det g dx, a.s..

Proof: For α > 3, we have Fα ⊂ C3(M) and ‖f‖C3(M) ≤ ‖f‖Fα ,∀ f ∈
Fα, so that we can apply Theorems 4 and 5. The first statement follows for
sufficiently small h and by plugging the bound on the covering numbers of Fα(s)
from Theorem 2 into Theorem 4 and putting Theorem 4 and 5 together. The
dominating terms of log P(supf∈Fα(s) |Sλ,h,n(f)− ESλ,h,n(f)| > ε) are

(

2C s2

ε hm+1

)

m
α

−nh
m (1/s)4 ε2

4C
=

(

2C s2

ε hm+1

)

m
α

[

1− nh
m2+m+αm

α (1/s)4+2m
α ε2+

m
α

C ′

]

so that for the given rate the term in the bracket can be made negative and
and the whole term is summable so that almost sure convergence follows by the
Borel-Cantelli Lemma. The optimal rate for h(n) can be computed by equating
the two order-terms. For the second statement we simply choose s = log(n). ¤

This theorem provides uniform convergence of the adaptive regularization func-
tional Sλ,h,n(f) over the large class of α-Hölder functions. We think that this
theorem will be helpful to prove consistency results for algorithms which use
Sλ,h,n(f) as a regularizer. As expected the rate depends only on the intrinsic
dimension m and not on the extrinsic dimension d. At least for low-dimensional
submanifolds we can therefore get a good approximation of the continuous reg-
ularization functional even if we work in a high-dimensional space.

12



References

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Comp., 15(6):1373–1396, 2003.

[2] M. Belkin and P. Niyogi. Semi-supervised learning on manifolds. Machine Learn-
ing, 56:209–239, 2004.

[3] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based
manifold methods. In P. Auer and R. Meir, editors, Proc. of the 18th Conf. on
Learning Theory (COLT), Berlin, 2005. Springer.

[4] O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Adv. in Neur. Inf. Proc. Syst. (NIPS),
volume 16. MIT Press, 2004.

[5] S. Canu and A. Elisseeff. Regularization, kernels and sigmoid net. unpublished,
1999.

[6] S. Coifman and S. Lafon. Diffusion maps. Preprint, Jan. 2005, to appear in Appl.
and Comp. Harm. Anal., 2005.

[7] E. Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities.
Courant Institute of Mathematical Sciences, New York, 1998.

[8] M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak
and strong pointwise consistency of graph Laplacians. In P. Auer and R. Meir, ed-
itors, Proc. of the 18th Conf. on Learning Theory (COLT), Berlin, 2005. Springer.

[9] M. Hein. Geometrical aspects of statistical learning theory. PhD the-
sis, MPI für biologische Kybernetik/Technische Universität Darmstadt, 2005.
http://www.kyb.mpg.de/publication.html?user=mh.

[10] H. Hendriks, J.H.M. Janssen, and F.H. Ruymgaart. Strong uniform convergence of
density estimators on compact Euclidean manifolds. Statist. Prob. Lett., 16:305–
311, 1993.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc., 58:13–30, 1963.

[12] A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in
functional spaces. Amer. Math. Soc. Transl., 17:277–364, 1961.

[13] T. Schick. Manifolds with boundary of bounded geometry. Math. Nachr., 223:103–
120, 2001.

[14] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes.
Springer, New-York, second edition, 2001.

[15] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Adv.
in Neur. Inf. Proc. Syst. (NIPS), volume 16. MIT Press, 2004.

Appendix: Covering numbers for α-Hölder functions on
compact Riemannian manifolds (with boundary)

Proof: [Proof of Theorem 1] The first property follows by the maximality of the
separated subsets. It remains to prove the upper bounds on the cardinality of I1
and I2. The sets {n(x′i, ε2 , ε2 )}i∈I1 and {n(xi, ε2 )}i∈I2 are disjoint. Therefore

∑

i∈I1

vol
(

n(x′i1 ,
ε

2
,
ε

2
)
)

≤ vol
(

N(ε)
)

,
∑

i∈I2

vol
(

n(xi2 ,
ε

2
)
)

≤ vol
(

M
)

.
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Then use vol
(

N(ε)
)

≤ S2ε vol
(

∂M
)

and the volume bounds in Lemma 1. ¤

Now we are ready to prove the result on covering numbers for Fα(s).

Proof: [Proof of Theorem 2] Let δ =
(

ε
3s e2m

)1/α
and let T1 = {z′i}i∈I1 and

T2 = {zi}i∈I2 describe a maximal δ-separated set of ∂M and M\N(δ) as in
Theorem 1. For each vector k = (k1, . . . , kd) with k ≤ α we form for each
f ∈ Fα(s) the two vectors

Akf =

(

[Dk(f ◦ φz′1)(0)
s δα−k

]

, . . . ,
[Dk(f ◦ φz′

|I1|
)(0)

s δα−k

]

)

Bkf =

(

[Dk(f ◦ φz1)(0)
s δα−k

]

, . . . ,
[Dk(f ◦ φz|I2|)(0)

s δα−k

]

)

,

where [·] denotes rounding to the closest integer and φ denotes the normal charts
corresponding to the points in T1 and T2. Note that the vector Akf is well-
defined since all derivatives of f are uniformly bounded. Now let f1 and f2 be
two functions such that Akf1 = Akf2 and Bkf1 = Bkf2 for each k ≤ α. Define
g = f1 − f2, then one has for every z ∈ T1 ∪ T2

|Dkg(z)| = |Dkf1(z)−Dkf2(z)| ≤ s δα−k (4)

Moreover for every x ∈ M\N(δ) there exists an zi ∈ T2 such that d(x, zi) ≤ δ
and for every x ∈ N(δ) there exists an z′i ∈ T1 such that d(x, z′i) ≤ 2δ (this
follows from the definition of normal collar charts and the triangle inequality11).
Since M ⊂M\N(δ)∪N(δ) there exists for each x ∈M a corresponding normal
chart φz based on z ∈ N1∪N2 such that for each coordinate xi = (φ−1

z (x))i, i =
1, . . . ,m of x one has xi ≤ max{δ, 2δ} = 2δ. Now we do a Taylor expansion of g
around z = φz(0) in the normal chart φz and get for x = φz((x1, . . . , xm)):

g(x)=
∑

k≤α

Dk(g ◦ φz)(0)
m
∏

i=1

xkii
ki!

+
∑

k=α

(

Dk(g ◦ φz)(λxi)−Dk(g ◦ φz)(0)
)

m
∏

i=1

xkii
ki!

with λ ∈ [0, 1]. By (4) and the Lipschitz property of functions in Fα(s) we get

|g(x)| ≤
∑

k≤α

sδα−k
(2δ)k

k!
+ 2s

mα

α!
2αδα ≤ δαe2m(s+ 2s) ≤ 3se2mδα = ε,

so that the covering numbers of an ε-covering of Fα(s) are upper bounded by
the number of possible matrices Af and Bf for f ∈ Fα(s). The number of
possible derivatives ≤ α is upper bounded by

∑α
i=0 m

i = mα−1
m−1 for m > 1 and

α for m = 1. Since in Fα(s) the derivatives fulfill |Dkf(x)| ≤ s for each k,
Akf contains 2

δα−k
+ 2 values which is upper bounded by 2

δα + 2. Thus for one
point in the covering the number of different values in Af is upper bounded by

11 One follows the geodesic along the boundary which is shorter than δ and then the
geodesic along the inward normal vector which has also length shorter than δ.
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(

2
δα + 2

)2mα

for m ≥ 2 and
(

2
δα + 2

)α
for m = 1. The same holds for Bkf .

Assume now we reorder the set N1 in such a way that for each j > 1 there is
an index i < j such that d(z′i, z

′
j) ≤ 2δ. We compute now the range over which

values of Akf(z
′
j) vary given the values of Akf(z

′
i). The problem is that the

derivatives of f at z′j and z
′
i are given with respect to different normal charts φz′j

and φz′i . In order to compare Akf(z
′
j) with Akf(z

′
i) we therefore have to change

coordinates. Let xµ be the coordinates with respect to φz′j and yµ with respect
to φz′i . Then one has e.g. for the second derivative,

∂2f

∂xµ∂xν
=

∂2f

∂yβ∂yγ

∂yβ
∂xµ

∂yγ
∂xν

+
∂f

∂yα

∂2yα
∂xµ∂xν

=: C2
yf,

with the obvious generalization to higher orders. By Taylor’s theorem one gets

Dk
xf(xj) = Dk

x(f ◦ φz′j )(0)=
∑

k+l≤α

Dk+l
x (f ◦ φz′j )(x

i)
xl

l!
+R=

∑

k+l≤α

Ck+l
y (0)

xl

l!
+R

Define Bk+l
y (0) as Ck+l

y (0) with derivatives replaced by their discretized values,

∂kf

∂yi1 . . . ∂yik
(0) −→ s δα−k

[

∂kf

∂yi1 . . . ∂yik
(0)

1

s δα−k

]

Given now all the discretized values Af(z′i) we arrive at

∣

∣

∣
Dk
x(f ◦ φz′j )(0)−

∑

k+l≤α

Bk+l
y (0)

xl

l!

∣

∣

∣
≤
∑

k+l≤α

∣

∣

∣
Ck+l
y (0)−Bk+l

y (0)
∣

∣

∣

xl

l!
+ |R|

The leading term of the summands can be upper bounded as follows
∣

∣

∣
Ck+l
y (0)−Bk+l

y (0)
∣

∣

∣
≤ s (Γ m)kδα−k−l

where Γ = maxi,j maxk≤α supx∈M Dk(φ−1
z′i
◦ φz′j ). It can be shown that the

remainder term |R| is of order s δα−k, so that in total we get that there exists a
constant C depending on Γ , m and α such that

∣

∣

∣
Dk
x(f ◦ φz′j )(0)−

∑

k+l≤α

Bk+l
y (0)

xl

l!

∣

∣

∣
≤ C s δα−k

That implies that given the values of Af at xi the values of Af at xj vary over

an interval of size C s δα−k

δα−k
= C s. Using our previous bound on the number of

possible values of Af for one point we get that the total number of values of Af
is upper bounded as follows:

|Af | ≤
(

2

δα
+ 2

)2mα

(

(C s)2m
α

)|I1|

The same can be done for |Bf |. Replacing |I1| resp. |I2| with the numbers from
Theorem 1 and upper bounding log(1/ε) by (1/ε)m/α finishes the proof. ¤
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